SOURYA KOVVALI

Full-Stack Roboticist

skovvali@ethz.chwww.sourya.me

EDUCATION

MSc - Robotics, Systems & Control

ETH Zürich, Switzerland

BTech - Mechanical Engineering

IIT Madras, India

Sep 2019 – present **5.05*** /6

Aug 2014 – May 2018

9.51/10

SKILLS

Programming Python, C/C++, HTML/CSS/JS/TS, MATLAB

Software & Tools ROS, Docker, Jenkins, git, Flask, Svelte, Server management

CAD & 3D Autodesk Fusion 360, Autodesk Inventor, Blender

Electronics Jetson, Raspberry Pi and other SBCs, Arduino, ESP8266/ESP32

TECHNICAL PROJECTS

AMZ Driverless Racing &

Lead, Software Sep 2020 – present

• Developing 'AMZ Playground' – extensible web application for visualization, simulation, and analysis

• Overseeing software infrastructure, autonomous computer, and track-tools work packages

Core Member, Software Infrastructure

Oct 2019 - Aug 2020

- Developed 'amz-tool' to aid developers with updating dependencies, formatting, linting, and other functions
- Coordinated autonomous software development, maintained FSSIM (Formula Student Simulator)
- Setup and maintained self-hosted continuous integration (CI) servers for automated testing and feedback
- Designed and built ground truth mapping device (GTMD) to tag racetrack using Real-time kinematic (RTK) service

Team Anveshak - Mars Rover Design 🔗

Team LeadJul 2017 – Jul 2018

- Lead the team and represented at University Rover Challenge 17, Utah, USA 29th among 82 teams globally
- Conducted crowdfunding campaign raising \$2700 & networked with companies for sponsorship deals
- Initiated and lead the media team responsible for video editing, graphic design, and web development

Technical Lead Feb 2016 – Jul 2017

- Headed design of tele-operated robotic arm and gripper for rover with end-to-end design analysis (2017 18)
- Lead the chassis design and manufacturing for the first version of the rover Aurora v1 (2017)

WORK EXPERIENCE

Skillveri Training Pvt. Ltd.

Intern, Product Design Jan 2018 - May 2018

- Designed arc welding torch for VR simulator setup that utilizes retracting rod mechanism for electrode feed
- Integrated and programmed microcontroller for PID controlled retraction rate & IMU orientation feedback

Detect Technologies

Intern, Product Design

Dec 2015 - Feb 2016

• Ported thermal camera design to GoPro form-factor for fitting into existing gimbals on pipe inspection drones

RESEARCH EXPERIENCE

INDUS Lab, IIT Bombay

Research Assistant, Bipedal Robot Project

Aug 2018 - Mar 2019

- Designed and prototyped a pivoted bipedal test bench for conducting locomotion experiments
- · Setup dynamic simulation environment in V-REP and planned transition from simulation to hardware

R2D2 Lab, IIT Madras

Undergraduate Researcher, Stance Control Orthosis Project

Jun 2017 - Jul 2018

- Implemented weight-activated knee-joint mechanism on prototype orthosis to achieve gait-based locking
- Performed FEA, fabricated entirely using stacked laser-cut profiles and load-tested multiple knee joints on UTM

Robotics Lab, IIT Madras

Undergraduate Researcher, GraspMan Mobile Manipulator Project

Jan 2017 - Oct 2017

- Designed dual-gripper redundant serial chain robot capable of locomotion, grasping and in-hand manipulation
- Experimented on grasping force for of various sizes and shapes to establish comparison metrics across grippers

PUBLICATIONS

[Conf. Paper] Govindan, N., Kovvali, S. S. V., Chandrasekaran, K., & Thondiyath, A. (2018, May). GraspMan-A Novel Robotic Platform with Grasping, Manipulation, and Multimodal Locomotion Capability. In 2018 IEEE International Conference on Robotics and Automation (ICRA)(pp. 7354-7359). IEEE.

[Patent - In Review] Nagamanikandan Govindan, Sai Sourya Varenya Kovvali, Karthik Chandrasekaran, and Asokan Thondiyath, 'A versatile hybrid robotic system for multimodal locomotion and grasping', Application Number: 201841008257, filed on 06/03/2018

COURSE PROJECTS

ETH Zürich

151-0323-00: Autonomous Mobility on Demand: From Car to Fleet

- Developed and deployed ROS packages of image processing and state estimation tasks on Duckiebot platform
- Applied basic machine learning to perform object detection and model learning tasks in Duckietown simulator

263-5806-00: Computational Models of Motion

Developed unified gait controller for both linear and angular DoF of body on a simulated hexapod robot

IIT Madras

ME6012: Mechanics of Human Movement

Processed motion capture and force plate date and performed Inverse-dynamics for analyzing various gaits

AM5011: Virtual Reality Engineering

• Simulated kinesthetic sense of touching spherical surface using motorized articulating touch surface

COURSEWORK

Autonomous Mobility on Demand Autonomous Mobile Robots

Intro. to Field and Service Robots

Model Predictive Control

Dynamic Prog. & Optimal Control

Digital Manufacturing

Computational Models of Motion
Vision Algorithms for Mobile Robotics

Machine Vision and its Applications